Highest vectors of representations (total 2) ; the vectors are over the primal subalgebra. | \(g_{3}\) | \(g_{7}\) |
weight | \(\omega_{2}\) | \(\omega_{1}+\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{2}} \) → (0, 1, 0) | \(\displaystyle V_{\omega_{1}+\omega_{3}} \) → (1, 0, 1) | |||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | |||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Semisimple subalgebra component.
| |||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{2}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}\) | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | |||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{2}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}\) | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | |||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}} \oplus M_{-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus 3M_{0}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{3}}\) | |||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{\omega_{2}}\oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}} \oplus M_{-\omega_{2}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus 3M_{0}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{3}}\) |